Preface to the Second Edition
Preface to the First Edition
1 What Is This Book All About?
2 Mathematical Preliminary
3 Fourier Analysis
4 Exercises
5 References
6 Index
3.2.1 Rectified Sine Wave 36
3.2.2 Comb Function and the Fourier Series Kernel KN(t) 37
3.3 Fourier Transform 39
3.4 Properties of Fourier Transform 41
3.4.1 Linearity 41
3.4.2 Time Shifting and Time Scaling 41
3.4.3 Frequency Shifting and Frequency Scaling 42
3.4.4 Moments 42
3.4.5 Convolution 43
3.4.6 Parseval's Theorem 43
3.5 Examples of Fourier Transform 44
3.5.1 The Rectangular Pulse 44
3.5.2 The Triangular Pulse 45
3.5.3 The Gaussian Function 46
3.6 Poisson's Sum and Partition of Unity 47
3.6.1 Partition of Unity 49
3.7 Sampling Theorem 51
3.8 Partial Sum and Gibb's Phenomenon 53
3.9 Fourier Analysis of Discrete-Time Signals 54
3.9.1 Discrete Fourier Basis and Discrete Fourier Series 54
3.9.2 Discrete-Time Fourier Transform (DTFT) 56
3.10 Discrete Fourier Transform (DFT) 58
3.11 Exercises 59
3.12 References 60

4 Time-Frequency Analysis 61
4.1 Window Function 63
4.2 Short-Time Fourier Transform 64
4.2.1 Inversion Formula 65
4.2.2 Gabor Transform 66
4.2.3 Time-Frequency Window 66
4.2.4 Properties of STFT 67
4.3 Discrete Short-Time Fourier Transform 68
4.4 Discrete Gabor Representation 70
4.5 Continuous Wavelet Transform 71
4.5.1 Inverse Wavelet Transform 73
4.5.2 Time-Frequency Window 74
4.6 Discrete Wavelet Transform 76
4.7 Wavelet Series 77
4.8 Interpretations of the Time-Frequency Plot 78
4.9 Wigner-Ville Distribution 80
4.9.1 Gaussian Modulated Chirp 81
4.9.2 Sinusoidal Modulated Chirp 82
4.9.3 Sinusoidal Signal 83
4.10 Properties of Wigner-Ville Distribution 83
4.10.1 A Real Quantity 85
4.10.2 Marginal Properties 85
4.10.3 Correlation Function 86
4.11 Quadratic Superposition Principle 86
4.12 Ambiguity Function 88
4.13 Exercises 89
4.14 Computer Programs 90
4.14.1 Short-Time Fourier Transform 90
4.14.2 Wigner-Ville Distribution 91
4.15 References 93

5 Multiresolution Analysis 94
5.1 Multiresolution Spaces 95
5.2 Orthogonal, Biorthogonal, and Semiorthogonal Decomposition 97
5.3 Two-Scale Relations 101
5.4 Decomposition Relation 102
5.5 Spline Functions and Properties 103
5.5.1 Properties of Splines 107
5.6 Mapping a Function into MRA Space 108
5.6.1 Linear Splines \((m = 2)\) 109
5.6.2 Cubic Splines \((m = 4)\) 109
5.7 Exercises 110
5.8 Computer Programs 112
5.8.1 B-splines 112
5.9 References 113

6 Construction of Wavelets 114
6.1 Necessary Ingredients for Wavelet Construction 115
6.1.1 Relationship between the Two-Scale Sequences 115
6.1.2 Relationship between Reconstruction and Decomposition Sequences 117
6.2 Construction of Semiorthogonal Spline Wavelets 119
6.2.1 Expression for \(\{g_0[k]\}\) 119
6.2.2 Remarks 121
6.3 Construction of Orthonormal Wavelets 123
6.4 Orthonormal Scaling Functions 124
6.4.1 Shannon Scaling Function 124
6.4.2 Meyer Scaling Function 126
6.4.3 Battle-Lemarie Scaling Function 129
6.4.4 Daubechies Scaling Function 130
6.5 Construction of Biorthogonal Wavelets 136
6.6 Graphical Display of Wavelet 138
6.6.1 Iteration Method 138
6.6.2 Spectral Method 139
6.6.3 Eigenvalue Method 140
6.7 Exercises 141
8.5.2 Construction of Scaling Function and Wavelet from Lifting Scheme 234
8.5.3 Linear Interpolative Subdivision 234
8.6 References 237

9 Digital Signal Processing Applications 239
9.1 Wavelet Packet 240
9.2 Wavelet-Packet Algorithms 243
9.3 Thresholding 246
9.3.1 Hard Thresholding 246
9.3.2 Soft Thresholding 246
9.3.3 Percentage Thresholding 247
9.3.4 Implementation 247
9.4 Interference Suppression 248
9.4.1 Best Basis Selection 249
9.5 Faulty Bearing Signature Identification 252
9.5.1 Pattern Recognition of Acoustic Signals 252
9.5.2 Wavelets, Wavelet Packets, and FFT Features 254
9.6 Two-Dimensional Wavelets and Wavelet Packets 256
9.6.1 Two-Dimensional Wavelets 256
9.6.2 Two-Dimensional Wavelet Packets 258
9.6.3 Two-Dimensional Wavelet Algorithm 259
9.6.4 Wavelet Packet Algorithm 262
9.7 Edge Detection 264
9.7.1 Sobel Edge Detector 265
9.7.2 Laplacian of Gaussian Edge Detector 265
9.7.3 Canny Edge Detector 266
9.7.4 Wavelet Edge Detector 266
9.8 Image Compression 267
9.8.1 Basics of Data Compression 267
9.8.2 Wavelet Tree Coder 271
9.8.3 EZW Code 272
9.8.4 EZW Example 272
9.8.5 Spatial Oriented Tree (SOT) 275
9.8.6 Generalized Self-Similarity Tree (GST) 277
9.9 Microcalcification Cluster Detection 277
9.9.1 CAD Algorithm Structure 278
9.9.2 Partitioning of Image and Nonlinear Contrast Enhancement 278
9.9.3 Wavelet Decomposition of the Subimages 278
9.9.4 Wavelet Coefficient Domain Processing 279
9.9.5 Histogram Thresholding and Dark Pixel Removal 281
9.9.6 Parametric ART2 Clustering 282
9.9.7 Results 282
9.10 Multicarrier Communication Systems (MCCS) 284
9.10.1 OFDM Multicarrier Communication Systems 284
9.10.2 Wavelet Packet-Based MCCS 285